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Abstract

Multiscale features of transport processes in fractured porous media make
numerical modeling a difficult task, both in conceptualization and computation. Modeling
the mass transfer through the fracture-matrix interface is one of the critical issues in the
simulation of transport in a fractured porous medium. Because conventional dual-
continuum-based numerical methods are unable to capture the transient features of the
diffusion depth into the matrix (unless they assume a passive matrix medium), such
methods will overestimate the transport of tracers through the fractures, especially for the
cases with large fracture spacing, resulting in artificial early breakthroughs. We have
developed a new method for caleulating the particle-transfer probability that can capture
the transient features of diffusion depth into the matrix within the framework of the dual-
continuum random-walk particle method (RWPM) by introducing a new concept of
activity range of a particle within the matrix. Unlike the multiple-continuum approach,
the new dual-continuum RWPM does not require using additional grid blocks to
represent the matrix. It does not assume a passive matrix medium and can be applied to
the cases where global water flow exists in both continua. The new method has been
verified against analytical solutions for transport in the fracture-matrix systems with
various fracture spacing. The calculations of the breakthrough curves of radionuclides
from a potential repository to the water table in Yucca Mountain demonstrate the
effectiveness of the new method for simulating 3-D, mountain-scale transport in a

heterogeneous, fractured porous medium under variably saturated conditions.




1. Introduction

Transport through fractured porous media occurs in many subsurface systems and
is of great importance in many scientific and engineering fields (e.g.. underground natural
resource recovery, waste storage, soil physics, and environmental remediation). In
fractured porous media, the fractures generally occupy a tiny portion of the whole
volume, but the pore-water velocity in these fractures can be orders of magnitude higher
than that in the matrix (Wu et al., 2000). At the same time, especially under variably
saturated conditions, the global water flow in the matrix and the mass exchange between
the fractures and the matrix also play important roles in the transport process. These
special features distinguish the fractured porous media from general heterogeneous
porous media or pure fracture networks (without porous matrix), and make many
numerical methods for treating heterogeneity unsuitable. In modeling transport in a
fracture-matrix system, mass transfer between the fractures and the matrix is onc of the
key modeling issues (Neretnicks, 1980; Sudicky and Frind, 1982; Barker, 1985; Pruess
and Narasimhan, 1985; Maloszewski and Zuber, 1993; Wu and Pruess, 2000; Liu et al.
2000; and Tsang and Tsang, 2001, among others). Except for a few simple cases,
analytical solutions are not available for the mass transfer between the fractures and the
matrix. A discrete-fracture-network model with a finely gridded matrix is not feasible for
most real-world problems. As a result, numerical methods based on the dual-continuum
approache have often been used to simulate the fracture-matrix lransport system
(Huyakorn et al., 1983; van Genuchten and Dalton, 1986; Liu et al., 2000; Wu and

Pruess, 2000, among others). The major advantage of the dual-continuum approach is its




capability to capture the major features of flow and transport in fractured porous rock
(i.e., a fast fracture subsystem combined with a slow matrix subsystem) with reasonable
computational resources. However, the dual-continuum approach does not generally
capture the transient features of the diffusion depth into matrix because a single grid
block is used to represent the matrix. In many cases; especially with large fracture
spacing, a poor estimation of the diffusion flux through the fracture-matrix interface
(because of missing such transient features) may lead to significant errors in predicted
breakthrough curves (Figure 1). Figure 1 shows an example of the simulated
breakthrough curves from a system of parallel fractures separated by porous media. The
dual-continuum-based method is the conventional dual-continuum random-walk particle
tracking method (DCPT V1.0) while the analytical solution is based on the solution
derived by Sudicky and Frind (1982). Obviously, the dual-continuum-based method
greatly overestimates the breakthrough at early time. To address this problem, a more
general “muliiple-interacting continua™ (MINC) method was proposed for finite
difference methods by Pruess and Narasimhan (1985), which uses a number of nested
matrix blocks to capture the transient features of diffusion depth into the matnx.
Obviously, the MINC approach requires more (e.g.. often 10 times more) grid cells than
the dual-continuum approach (Wu and Pruess, 2000). This would result in a higher
computational cost (comparable with the cost of a discrete-fracture-network model) that
makes it unfeasible for large-scale problems. Recently, Tsang and Tsang (2001) proposed
an approach to simulate the diffusion into finite matrix blocks for the residence-time
particle tracking method based on an analytical solution for a simplified fracture-matrix

system. However, the method is applicable only for the cases in which the matrix can be



assumed to be passive medium (i.e., no water flow in the matrix or through the fracture-
matrix interface), which may oversimplify many real-world problems, especially where
unsaturated conditions prevail.

In this paper. we present a new technique for simulating transport in 3-D,
fractured porous media using the random-walk particle-tracking method. The new
technique is an extension and improvement of previous approaches (Pan et al., 2001).
The main advance is the development of a new method for calculating the particle-
transfer probability, which captures the transient features of diffusion depth into matrix
within the dual-continnum framework. As a result, the proposed dual-continuum RWPM
still maintains the simplicity and high efficiency of the RWPM without the disadvantages

of the conventional dual-continuum approach.

2. Theory and methods
2.1  Dual-continuum approach

In the dual-continuum approach, the {ractured porous medium is represented with
two interacting continua: a fracture continuum and a matrix continuum. In our dual-
continuum model, the entire domain is discretized into grid cells with each cell
containing both continua. Each continuum is connected individually between adjacent
cells while two continua are connected via the fracture-matrix interface within each cell.
Two flow fields are defined for two continua, respectively, and additional water fluxes
within each cell are used to describe the water flow between the two continua. Such 4-D
flow fields (3-D plus fracture-matrix dimension) can be calculated, for instance, by using

finite-difference or finite-element methods with a dual-continuum grid. The transport



process is also split into two sub-transport-processes in each continuum and the mass

exchange process between two continua within each cell.

2.2 Dual-continuum RWPM

There are many random-walk particle method (RWPM) algorithms available in
the literatures (Labolle et al., 1996, 2000; Tompson and Gelhar, 1990; Uffink, 1985:
Semra et al., 1993; and many others) for simulation of transport in a single-continuum
medium, which will not be discussed here. The dual-continuum RWPM used here is
similar to the approach proposed by Liu et al. (2000) except for that a different time
stepping strategy is used. It simulates the particle movements in each continuum with
regular (single-continuum) RWPM and uses a random continuum-switch process to
simulate the particle transfer between two continua (Pan et al., 2001). A random number
is drawn from the uniform distribution U[0. 1] and compared to the particle-transfer
probability after each movement. If the random number is larger than the particle-transfer
probability. the other continuum will be selected as the medium in which the particle will
travel at the next time step. Otherwise, the current continuum is still the selected medium.
In this way, particles will travel randomly in either fractures or matrix,

The dual-continuum RWPM tracks both the location (including which continuum)
of each particle and the time spent to reach that location. As a result, we can derive a
breakthrough curve by calculating the total mass carried by the particles passing a
specified observation location (e.g.. at water table) at different times. If all particles are
released at the same time, the breakthrough curve will correspond to a tracer pulse

injection. By defining appropriately the particle release times at the source, we can




calculate the breakthrough curves for any given tracer injection with variable

concentration.

2.3 Particle-Transfer Probability: The Conventional Approach

The particle-transfer probability is here defined as the probability of a particle
entering another continuum during a given time interval. Because the fracture-matrix
interaction is described at the cell level in the dual-continuum model, the particle-transfer
probability is also calculated at the cell level for each continuum. The net mass transfer
from the fracture continuum to the matrix continuum during the time interval At is the
difference between the mass transferred from the fractures to the matrix (mp,) and the
mass transferred from the matrix to the fractures (myy) during the same time interval. It

can be related to the particle-transfer probability as follows:

Mg — Mg =Ng 4P, =N 4P

where, [ is the mass carried by each particle while Py, and Py are the particle-transfer
probabilities for particles in the fracture and the matrix continua at time t, respectively.
The subscript indicates the transfer direction (e.g.. “fm” means from the fracture
continuum 1o the matrix continuum). Ny and N, are the numbers of particles in the
fracture continuum and the matrix continuum, respectively, for a given cell at time L
Unlike finite-difference methods or finite-element metheds, the particle-tracking method

does not directly calculate the net mass transfer between two continua. Instead, it




simulates the mass transfer in two directions separately by tracking the transfer of the
particles between two continua. For example, particle transfer occurs even if the net mass
transfer equals zero between the two continua, which only means that the number of
particles transferred is the same in both directions. In other words, two terms in Equation
(1) are simulated separately. Thus, the particle-transfer probability from one continuum
to the other can be calculated as the ratio of the mass entering the other continuum during
the time interval, At, to the mass in the current continuum at the beginning of the time
interval. Finding a proper scheme to estimate the mass transfer between two continua
(Mg, O M) 1s essential. The mass transfer consists of two components: advection and
diffusion/dispersion. The component due to advection can be directly calculated as the
product of the amount of the water entering the other continuum and the concentration of
that water. The component due to diffusion/dispersion, however, needs to be calculated
based on some assumptions about the concentration distribution within the matrix
because only a single grid block is used to represent the matrix in a dual-continuum
model. By assuming a second-order polynomial distribution of concentration away from
the fracture-matrix interface into the matrix, Liu et al. (2000) proposed a simple scheme
to approximate the diffusion component of the mass transfer and the corresponding
particle transfer probabilities for both directions. However, the scheme may fail if At is
large. To overcome the problem, Pan et al. (2001) have derived an improved scheme by
considering the temporal feature of the average concentration (Appendix A). The new

schemes of P, and Py for a given time interval, Al, can be calculated as (2a) and (2b),

respectively (see Appendix A).
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where F and QQ describe the strength of advection and dispersion/diffusion processes
through the fracture-matrix interface and the interfaces to adjacent grid cells in the same
continuum, respectively. The subscripts indicate the direction of those processes. The
parameters Ty and T, are the characteristic times of the fracture continuum and the matrix

continuum, respectively. The detailed expressions of these parameters are listed below:
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where, A, and A; are the area of the effective fracture-matrix interfaces within the grid
cell and the interface area to the ith adjacent grid cell, respectively. The gy, (positive if
flow from the fracture to the matrix) and q; (outwardly positive} are the water flux
through the fracture-matrix interface within the grid cell and the interface to the ith
adjacent grid cell, respectively. The parameters Dy, , Dfi, and Dm; are effective
dispersion coefficients of the matrix within the grid cell. the fracture continuum at the
interface to the ith adjacent cell, and the matrix continuum at the interface to the ith
adjacent cell, respectively. S, is the distance between the center of the cell and the ith
adjacent cell, while S, is the characteristic length of the fracture-matrix system (e.g., 1/6
of the fracture spacing for a parallel fracture system as suggested by Liu et al., 2000). V

and R are the volume of water and the retardation factor, respectively, with the subscripts

(3d)

(3e)

(3£)



indicating the continuum. Note that for a very small time step (At/t; or At/T,, reaches to
zero), the particle-transfer probabilities defined in Equations (2a) and (2b) will reduce 1o

the expresion proposed by Liu et al. (2000).

The scheme defined in Equation (2a) and (2b) with (3a-f) has been implemented in a

code called DCPT V1.0 (Pan et al., 2001).
24 Particle-Transfer Probability:The Transient Effect and The Activity Range

In the remainder of the paper, we shall consider only the case of tracer injection
with a single concentration pulse at time 0, because in a particle-tracking method any
given tracer injection with variable concentration can be simulated by a series of pulses
appropriately arranged over times at the source, and the breakthrough curve can be
calculated by summing up all individual breakthrough curves corresponding to the
individual pulse injections. In fact, such a superposition calculation is straightforward in
the dual-continuum RWPM proposed here because (1) any pulse can be represented by a
certain number of particles released at the same time and (2) both the amount of mass and

the time by which a particle reaches a particular location are tracked for each particle.

As shown in Figure 1, the scheme described in Equations (2) and (3) may lead to
overestimating the breakthrough at early time for systems with large fracture spacing. To
consider the problem, let us start with the parallel fracture system depicted in Figure 2
(the upper portion). After a pulse of particles is injected into the fractures at t = 0, the
pulse will gradually spread into the matrix. At early times, the range of the particle cloud
is limited, and only a tiny portion of the matrix is involved. Meanwhile, the concentration

gradient at the fracture-matrix interface is much greater than that at later time. In terms of
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random-walk particles, the distribution density function for the probability of finding a
particle at any specific location away from the fracture-matrix interface becomes wider
and flatter over time (lower portion of Figure 2, 13 > 12 > t] ). The method described
above, however, does not capture these transient features of the diffusion depth into the
matrix for a given pulse. As a result, the method will underestimate the mass exchange
between the two continua at early time and consequently overestimate the early
breakthrough, because the pore-water velocity in the fractures is usually orders of

magnitude faster than that in the matrix.

The problem with this method is that the full matrix volume, V.. and the
characteristic distance, Sg,, are used in calculating the particle-transfer probability
regardless of the time while in reality both of them are time-dependent. To see the
physical meanings of V and Sg; in the above method, we can rewrite the net mass-

transfer rate from the fractures to the matrix, Jiy, as:
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Equation (4) is obtained by inserting Equations (2) and (3) into Equation (1) and then
taking the derivative of Equation (1) with respective to At at At = 0. As shown in
Equation (4), the characteristic distance Sg, is used to describe the steepness of the
concentration gradient at the fracture-matrix interface, while the matrix volume V,;, is
used to define the concentration in the matrix for a given number of particles. As the
result of a diffusion process, the concentration gradient decreases and the volume of the

matrix that contains the particles increases with time. after a pulse is injected in the

(4)
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fracture. Both phenomena are caused by the limited. yet advancing, diffusion depth into
the matrix. In terms of the random-walk method, the walks of particles are confined
within a certain range in the matrix, depending on the time elapsed since the pulse has
been injected. We call such a range the activity range of particles, which can be defined
for each individual pulse such that the probability of finding a particle of the pulse
outside the range is practically zero. Obviously. the activity range is a function of time
elapsed since the injection of the pulse, t,, which can be tracked as the age of a particle in
the dual-continuum RWPM. This is because it is the time elapsed since the particle is
injected (born) into the fracture continuum. To incorporate these transient features in the
dual-continuum RWPM, we propose to modify the particle-transfer probability by
replacing the characteristic distance Sg, and the matrix volume V,, in (3a), (3d) and (3D
with the effective characteristic distance Sy, (t,) and the effective matrix volume V(1,).

These parameters are related to the activity range as follows:

where, B'{E,,J is the activity range, whose value varies from ( to B, the maximum activity

range (e.g., one-half of the fracture spacing as defined in Figure 2 for a system of

(5a)

(5b)
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parallel-plate fractures separated by porous rock). Note that the maximum activity range
may be significantly less one-half of the fracture spacing under unsaturated flow
condition even for a parallel fracture system because only a portion of connected
fractures is active (Liu et al, 1988). For a fractured porous medium with more
complicated geometry configurations, the relationship between the maximum activity
range and the fracture spacing cannol be expressed in a simple way. To be general, we
suggest that the maximum activity range. B, be approximated as the ratio of the volume
of matrix, Vy, to the area of the effective fracture-matrix interfaces within a given grid
cell, Apy, for an arbitrary fracture-matrix system under varied saturated conditions. Here,
A 18 determined as the product of the fracture-matrix interface area calculated based on
the geometry of the fracture network and the fracture-matrix-interface-area-reduction-

factor proposed by Liuet al. (1998).

To develop a method for estimating the activity range B'{tp} for a particle, we can
consider the transport in a system of parallel-plate fractures separated by porous rock
responding to a pulse injection in the fractures (Figure 2). By the superposition principle,
only the [-D governing equation (in the fracture-matrix dimension) is needed to derive

the activity range:

o el dC
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where s 15 the distance into the matrix. A pulse injection of tracer at t = 0 are confined in
the fractures (and ignoring the fracture aperture b because b<<B) and can be expressed as

follows:
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where &(e) is a Dirac delta function, whose value is zero everywhere except for infinite
value at point zero, which describes pulse injections at the fractures only while i is the
index of fractures. The term M, is a scaling factor that makes the C in the final solution
equivalent to the probability to find a particle at any specific location away in the matrix
(a dimensionless variable within a range between 0 and 1). The solution to Equation (6)

subject to Equation (7) can be expressed as (for s 2 0 and using symmetry, Bear, 1972):
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Because the concentration in Equation (9) can interpreted as the probability of finding a
particle (initially at s=0) at location s and time t,, the probability that a particle will be
located in the activity range [0, B'] can be obtained by integrating Equation (9) with
respect to s from 0 to B™:

P(0<s<B )=erf {-H—} (10}
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Equation (10) implies that B™ should be proportional to the square root of t,. By
definition, we should select a B” such that P(0 < s < B') is close to 1. An adequate

activity range for short time can be expressed as:

B'(1,)= m'm{ai [4D,, tp/R s B)

The corresponding P( ls| = B) is about 107, and B is by definition the maximum

activity range.

At a longer time, B” approaches B, and the other terms in Equation (8) cannot be
ignored. There is no simple solution such as Equation (9) for that case. However, because
our purpose is to get a proper B‘{tp}, we can assume that the relative effects of the other
terms in Equation (8) on the activity range are equal to their relative contributions to the

concentration. In other words, the activity range can be modified as follows:

B ()= mtn(4,.l'4r}m /R Wity ) E]

The weighting function W(t,) is derived as the ratio of the two-term solution to the one-

term solution as defined in Equation (8) at a given B, It can be approximated as:
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The reason for taking only two terms in calculating the weighting function is because

further terms are insignificant for typical values of B.
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The water flow through the fracture-matrix interface may act to increase the
activity range (if flow is from the fractures to the matrix) or decrease it (if flow is from
the matrix to the fractures). In a dual-continuum model. however, we only know the flux
at the fracture-matrix interface. Numerical experiments (not shown here) show that this
effect is not significant because the diffusion component would be less important if the
water flow through the fracture-matrix interface were large and the effects of that water
flow on the particle-transfer probability have already been incorporated separately, We
simply assume that the effect of water flow through the fracture-matrix interface on the
activity range is limited within a thin skin of the interface. As a result, the activity range

can be modified as;

m

. — ' 1
B (1,) = min 4\[4]}!1,1 /R, W{lpj+&ign{qﬁn}mux[|{h§| E. Zh} BJ (14)

where 2b is the effective [racture aperture and 6, is the volumetric water content in the

matrix.

3. Implementation Issues

3.1 The Framework of Dual-Continua RWPM

In the dual-continuum RWPM proposed here, particles travel in continuous 3-D
space. However, the domain is discretized into a limited number of grid cells. Each cell
contains a fracture continuum and a matrix continuum. All media parameters are assumed
to be cell-wise constant for each continuum. A particle may travel randomly in either the

fractures or the matrix. For each step, the particle tracker first determines how long (i.e.,
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the time step) the particle will travel for the current step and whether or not the particle
will transfer to the other continuum after this step. Then it uses a regular RWPM to
determine the new location of the particle, using the parameters of the current continuum
(Pan et al., 2001). An efficient cell-locator is used to determine which cell of the 3-D,
irregular grid the particle resides in after each step. The proposed dual-continuum RWPM
has been implemented in a code called DCPT v2.0. Note that the only difference of the
dual-continuum RWPM implemented in DCPT v2.0 and DCPT v1.0 is that the particle-
transfer probability is a function of a particle’s age (t,) in DCPT v2.0, but not in DCPT

v1.0.

3.2 The Adaptive Time Stepping
Adequate time steps used in a simulation are very important for the accuracy of
any RWPM because of its inherent explicit approach. We suggest using the following

adaptive time-stepping technique to achieve high performance without losing accuracy:

At =0.05 min L e in fractures {15a)
W oxwl V2

Ar =005 min 22 : S N malrex (I5b})
Ny TNz

where Axy and Az are the lateral size (square root of the area in xy-plane) and thickness
of the given grid cell, respectivley. The parameters Vxy and Vz are the lateral and
vertical components of the pore-water velocity vector, respectively, The superscript
indicates the continuum. The parameters Ty and T, are the characteristic times, defined in

(3¢) and (30), for the fracture continuum and the matrix continuum of the given grid cell,
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respectively. The main advantage of the time-stepping technique based on Equation (15)
is to use small time steps only where it is necessary (e.g., at location having high pore-

water velocity).

33 Calculation of the Activity Range
The activity range, B, is calculated with a two-step approximation: (1) to get a
primary activity range using Equation (11) first, and (2) then use this primary estimation

of the activity range 1o get a new activity range B using Equation (14).

3.4 Exception of the Activity Range and the Initial Status

The above derivation of the activity range is valid only for particles initially
released in the fractures. The activity ranges for particles released into the matrix would
be different, and depend on how far from the interface they are initially located, which is
not known in practice. We assume that all particles initially released into the matrix are
uniformly distributed within the matrix, and thus the activity range will always be B. we
assign a parameter called “initial status” to each particle to distinguish which continuum

it is released into initially (at t, = 0).

4. Results and Discussion
4.1 Verification with Analytical Solutions

An analytical solution for solute transport in fractured porous media with parallel
fractures was derived by Sudicky and Frind (1982). This solution is based on the

assumptions that (1) the solute transport between fractures and matrix occurs through
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matrix diffusion in the horizontal direction only, and that (2) matrix advection and
diffusion in the vertical direction can be ignored. Table 1 shows the relevant parameters
for the two test cases. In particular, two different fracture spacings of | meter and 10
meters were used for Case 1 and Case 2, respectively.

Figure 3 shows the results for Case 1. Both old (DCPT v1.0) and new schemes
(DCPT v2.0) predict breakthrough curves that agree well with the analytical solutions.
The old scheme slightly overestimated the concentration at early times, but not very
significantly for this small fracture spacing (1m). However, for Case 2, which has larger
fracture spacing (10m), the old scheme seriously overestimates the breakthrough at early
times (Figure 4). The plateau of the breakthrough curve predicted by the old scheme
starts at about 0.1 year (beyond the scale in the figure). This means that more than 60%
of solutes injected into the fractures at time zero would leach out of the system in about
0.1 year. But the analytical solution reveals that the similar time is about at 4 x 10" years.
Note that the old scheme still agrees well with the analytical solution at very later time.
On the other hand, the new scheme predicts breakthrough curves that are almost identical
to the analytical solutions for both cases (Figure 3 and 4). Thus, the new scheme
effectively solves the problem of capturing the transient features of the diffusion depth
into the matrix using only one matrix block to represent the matrix in dual-continuum
approaches.

The approach developed for the residence-time based particle tracking method
requires assuming that the matrix acts as a passive medium only (Tsang and Tsang, 2001,
among others). For finite-difference methods, a MINC approach was used to overcome

the same problem, an approach that requires about 10 times more matrix blocks to
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represent the matrix for typical fracture spacing (Pruess and Narasimhan, 1985; Wu and
Pruess, 2000). Note that a similar approach based on the activily range concept can be
incorporated into a finite-difference method if only a single pulse of tracers is simulated.
However, it would not be applicable to the other types of problems because the mass in
each grid cell cannot be labeled according to the injection times in a finite-difference
method. Instead, it would have to decompose the problem into a number of subproblems
of single pulse injection and then integrate the results of the subproblems one by one. The
activity-range-based approach can be used for arbitrary fracture spacing without losing
the simplicity and efficiency of the dual-continuum RWPM.

Al early times, the fracture spacing should have little effects on the activity range
because the activity range is controlled only by the diffusion process, and the weighting
function W(t,) is almost one for a small t,. The analytical solutions for Case 1 and Case
2 depicted in Figure 5 confirm this feature. Up to 5000 years, the breakthrough curves are
almost identical for Case 1 and Case 2 (Figure 5).

To further explore the dynamics of the particle transfer between fractures and
matrix, we have plotted the particle-transfer probabilities versus t; in Figure 6 for a given
time step (1 day). At very small t,, the particle-transfer probabilities for both directions
are close to 1. which indicates extensive mass exchange between the fractures and the
matrix at that stage. With increasing t,. the particle-transfer probabilities decrease quickly
as the activity range in the matrix increases. until the activity range hits the maximum
value (B), at which time the particle-transfer probabilities become constant. The turning
age (t,) for the case of 10 m fracture spacing is about 10" years, about 100 times that for

the case of 1 m fracture spacing. This is consistent with the relationship expressed in
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Equation (12), that t, has a quadric relationship with B". The particle-transfer probability
from the matrix to the fractures decreases faster than that from the fractures to the matrix,
because the effective matrix volume also increases with the increase of the activity range
but the effective fracture volume is constant. Conceptually, the particles in the matrix
have a larger probability of staying far from the fracture-matrix interface as the activity
range increases than the beginning, while the particles in the fractures are always close to
the interface, The old scheme does not capture the dynamic feature of the particle-transfer
probability described above and uses constant particle-transfer probabilities that are only
valid for later times.
4.2  Application to Three-Dimensional Transport in Unsaturated Fractured
Rocks

The unsaturated zone of Yucca Mountain is being considered as a potential
subsurface repository for storage of high-level radioactive waste of the US. The potential
repository would be located in the highly fractured Topopah Spring welded unit (TSw).
about 300 m above the water table. An important issue in potential repository
performance assessment is predicting the breakthrough of radionuclides at the water table
in case of waste package failure. Computer modeling is the major approach for the task
because the slow transport processes in unsaturated tuff could involve a temporal scale up
to one million years.

The three-dimensional model domain and the corresponding irregular numerical
grid of this mountain-scale problem are shown in plan view in Figure 7. The detailed
descriptions of the model can be found in the related report written by Wu et al. (2000).

The following is a summary. The model domain covers a lotal area of approximately 40
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km®. Domain thickness varies from 500 to 700 m, depending on local tepography. The
domain is filled with layered tuffs of spatially varied thickness complicated by faults.
From the land surface downward, these layers are the Tiva Canyon welded (TCw) unit,
the Paintbrush nonwelded (PTn) unit, the Topopah Spring welded (TSw) unit, the Calico
Hills nonwelded (CHn), and the Crater Flat undifferentiated (Cfu) units. Fracture density
varies with the different layers, mainly depending on the degree of welding. The potential
repository is located in the middle of the domain, an approximate area of 1,000 m (east-
west) by 3.000 m (north-south), surrounded by faults (Figure 7). The repository is
represented by a number of 5 m thick grid cells. A steady-state flow field corresponding
to the present-day infiltration map is assumed and calculated using the TOUGH2 code
(Wu et al., 2000). The dual-permeability grid used in calculation has 104,156 grid cells
and 421,134 connections. A pulse release of two radionuclides into fractures with
technetium as a conservative tracer and neptunium as a reactive (i.e., adsorbing) tracer is
considered. Table 2 shows the parameters used in the simulation. Radioactive decay and
mechanical dispersion are ignored for simplicity.

Figure 8 and 9 show the predicted breakthrough curves at the water table for
technetium and neptunium, respectively. In the figures, the relative mass is defined as the
cumulative mass of the radionuclides passing through the water table over time.
normalized by the total mass released at the repository. We also include the results
generated by the finite-difference-based simulator, T2R3D, with a dual-continuum (dual-
permeability) grid as a reference (Wu and Pruess, 2000). The same flow fields calculated
using the TOUGH2 code are used for transport simulations with all three codes: T2R3D.

DCPT V1.0, and DCPT V2.0. The CPU times used are about 3600 s for T2ZR3D on the
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Alpha work station, 310 s for DCPT v1.0 on a Pentium PC, and 315 s for DCPT v2.0 on
a Pentium PC. In both cases, DCPT v1.0 and T2R3D are in good agreement (Figure &
and 9). This good match shows that the dual-continuum RWPM proposed by Pan et al.
(2001) can be successfully applied to simulate the three-dimensional transport in the
heterogeneous, unsaturated porous media. However, ignoring the transient feature of the
diffusion depth into matrix have significantly affected the predicted breakthrough of
radionuclides. Let us define tay as the time by which 20% of the mass has passed through
the water table. With the model proposed in this paper (DCPT v2.0), the predicted values
of Ly are about 2,000 years for Tc (Figure 8) and 150,000 years for Np (Figure 9),
respectively. Both DCPT v1.0 and T2R3D predict much smaller values of tip, about 15
years for Tc (Figure 8) and 40,000 years for Np (Figure 9). The fast breakthrough
represented by the first plateau in Figure 8 predicted by DCPT v1.0 and T2R3D is largely
caused by overestimation of the transport through the fractures as a result of ignoring the
transient features of the diffusion depth into matrix. Similar phenomena can be seen in
Figure 9. Theoretically, this problem can be solved using a MINC mesh with T2R3D.
However. the size of the required MINC mesh for such a mountain-scale application is
practically prohibitive. For example, the fracture spacing in the TSw unit in which the
repository located is about 0.31 m. The examples of using MINC meshes presented by
Wu and Pruess (2000) show that eight sub-blocks are used for the case with 2B = 0.1 m
and 11 sub-blocks for 2B = 0.17 m, respectively. As a result, the number of cells for a
proper MINC mesh would at least be over a half-million, which may require a super
computer to solve the same problem with parallel computing techniques (Wu et al..

2001). On the other hand, the particle tracking approach proposed here can solve this
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problem for varied fracture spacing without using any additional erid blocks. Note that
the active fracture model is applied in above unsaturated flow and transport simulations.
Therefore, the fracture-matrix interface area varies greatly over space depending on the
water saturation in the fracture continuum. As a result, the effective fracture spacing can
be much larger than that calculated based on the geometry of the fracture network for a

given formation of rock.

5. Summary

A new method for calculating particle-transfer probability between the fracture
and matrix continua has been developed that captures the transient features of diffusion
depth into matrix within the dual-continuum framework. As the result of a diffusion
process, the concentration gradient decreases and the volume of the matrix containing the
particles increases with time after a pulse of particles is injected into the fractures. In
other words, the diffusion depth is limited and transient. In terms of the random walk
method, all particles of that pulse will be confined within a limited range within the
matrix (the activity range, which can be defined as the range in the matrix such that the
probability of finding a particle outside the range is practically zero). The activity range
of a particle is a function of the time elapsed since the pulse to which the particle belongs
is injected, which can simply be tracked as the particle’s age in a dual-continuum
RWPM. As a result, the new dual-continuum RWPM can capture the important transient
features of the diffusion depth into the matrix without using additional matrix blocks (as
used in a multiple-continuum approach). It does not assume a passive matrix medium (as

required by a residence-time particle-tracking approach) and can be applied to cases
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where global water flow exists in both continua. It still maintains the simplicity and high
efficiency of the RWPM without the disadvantage of the conventional dual-continuum
approach. Results are in good agreement with existing analytical solutions with different
fracture spacing. We have used this method to calculate breakthrough curves for
radionuclide migrating from a potential repository to the water table in Yucca Mountain.
The results of this calculation demonstrate the effectiveness of this new technique in
simulating 3-D, mountain-scale transport in a heterogeneous, fractured porous medium

under variably saturated conditions.
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Appendix A: Derivation of the general scheme of the particle-transfer probability

In the framework of the dual-continuum model. the mass of particles initially in
continuum j will be partitioned into three portions after a duration [0, t]. They are:

(a) Mass entering the same continuum of neighboring cells (', ):
(b) Mass entering the other continuum of the same cell (mi);
(c) Mass staying in the same continuum of the same cell (m!, ).

Therefore, the particle-transfer probability, at which a single particle in continuum Jatt=
0 will be in continuum k at time t, can be defined as the following ratio:

m m

ij: I:AI_}

my +my, +mi  mi()

where m’ (0) is the mass of particles initially in continuum j.

The mass-balance equation for the particles in continuum j at t = 0 for a given cell can be
expressed as:

r !
C;(0)(Vol; + Kdm;)=C, (1) (Vol| + }a;:JJ:nJ;wJ'F“c C; (1) c::+_[ Q,C, (1) dr (AZ2)
Ll 0

where C;. Vol,. Kdj, and m; are the concentration, volume of liguid, adsorption
coefficient, and mass of rock in continuum j, respectively. Fj, and Q; describe the
strength of advection and dispersion/diffusion processes through the fracture-matrix
interface and the interfaces to adjacent grid cells in continuum j, respectively. The
detailed expressions of these two parameters are shown in Equations (3a) and (3b) for
fracture continuum (j = f), and Equations (3d) and (3e) for matrix continuum (j = m),
respectively. Both Fj, and Q; are assumed to be constant within the time interval (0, t).
Note that handling Fj, and Q; in this way is equivalent to the way for representing the net
mass flux through an interface in a finite-difference method. For example, the net mass
flux from fracture continuum to matrix continuum can be expressed as (replacing j with f
and k with m):

DmAﬁn

F1m [:I : FI1'I| {:m =T“3x':'-|rmﬁ1m 'n]cl _mux':_ql'mhlm'[ncln i+ [Cl' _le {AB}

1511
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In Equation (A3), the sum of first two terms on the right side represents the advection
flux while the last term on the right side is simply the finite-difference approximation of
the diffusion flux at the fracture-matrix interface.

Taking derivatives on both sides of Equation (A2) with respect to t, we have a first order
ordinary differential equation;

dC (1)
LY, Lo w=o (A4)

dt L4

where, T is the characteristic time of continuum j for the given cell, and is defined as

T':Vnij+Kd,m1 (AS)
Fip +0Q,
The solution of Equation (A4) is readily obtained as

C;)=C (0 exp (-t/ 1) (AB)

Therefore, the probability of a particle being transferred from continuum j to continuum k
during (0, t) can be calculated as:

3
Fyy _Lc (e)dr ¥

3 < —expl- A7
i Ci( Vol +Kd;m;) Q; +Fy i-expl-1r,)] (AT)

Note that, in the above derivation, we use t instead of At for symbolic simplicity. The 1 =
0 actually indicates the starting point of a time step. The particle-transfer probability from
fracture continuum to matrix continuum defined in Equation (2a) are obtained by
replacing t with At, j with f, and k with m in (A7), respectively. Expression (2b) can be
obtained in the similar way.
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Table 1 Parameters Used for the Transport Problem in a Parallel Fracture System

Parameter

Value

Molecular diffusion coefficient (D,,)

25x10" m? /s

Fracture spacing (2B)

1.0 m (Case 1) or 10.0 m (Case 2)

cbservation point

Fracture aperture (2b) 2x10° m
Retardation factor (R ) 30
Volumetric Water content in matrix 0.1 m¥m’
Velocity in fracture 1.1574%10° m/s
Erid spacing B.5m
Matrix volume per cell 0.25 m® (Case 1) or 2.5 m® (Case 2)
Fracture volume per cell 0.5x10° m°
Fracture-matrix interface area 0.5 m°
Distance from the source of tracer to the 36.5m

Table 2 Parameters for the mountain-scale transport problem

Parameters Technetium (Tc¢) Neptunium(Np)

‘Molecular diffusion coefficient (mYs) | 3.2%107 1.6x10™"

Adsorption coefficient K4 {cnﬁ’s] 0.0 for all fractures and | 4.0 for zeolitic matrix

malrix in CHn: 1.0 for vitric

matrix and  fault
matrix in CHn; 1.0
for matrix in TSw;
0.0 for else

Note: CHn—Calico Hills non-welded unit; TSw—Tiva Canyon welded unit.
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Figure Captions

Figure |.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

An example showing that a dual-continuum approach (e.g.. DCPT V1.0) may
overestimate the early breakthrough in fractured porous media

Schematic of the propagation of a pulse in a fracture-matrix system with time,
Parallel fractures separated by porous rock (upper portion). The distribution
density function becomes wider and flatter over time (lower portion, 3 > 12 >
Ll

Predicted breakthrough by DCPT v1.0, DCPT v2.0, and the analytical solution
for Case 1 (1 m fracture spacing)

Predicted breakthrough by DCPT v1.0. DCPT v2.0, and the analytical solution
for Case 2 (10 m fracture spacing)

The effects of fracture spacing on the breakthrough as a function of time.

The particle-transfer probabilities for both directions as a function of the
particle’s age (t;) for Case 1 and Case 2. The fracture spacing affects the
critical t, at which the particle-transfer probability becomes independent of the
particle’s age. There exists a quadric relationship between the critical t, and the
fracture spacing.

Plan view of the three-dimensional numerical grid of the unsaturated zone of
Yucca Mountain, showing the model domain, faults, underground tunnels, and
several borehole locations.

Predicted relative mass breakthrough curves of a conservative tracer (Tc)
arriving at water table using DCPT v1.0, DCPT v2.0, and T2R3D,
respectively. The only difference between the two versions of DCPT is the
scheme calculating the particle-transfer probabilities. Radioactive decay is
ignored.

Predicted relative mass breakthrough curves of an adsorbing tracer (Np)
armiving at water table using DCPT v1.0, DCPT +2.0, and T2R3D,
respectively, The only difference between the two versions of DCPT is the
scheme calculating the particle-transfer probabilities. Radioactive decay is
ignored.
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